

MINOS DAQ - An Overview

Tim Nicholls - Rutherford Appleton Lab

MINOS Online Meeting, RAL 29th January 2001

Introduction

- Aim of talk: set scene for DAQ discussions
- Topics:
 - DAQ Concepts
 - System Overview
 - Run Model (new to many)
- No detailed info / test results etc:
 - Tass will give more details in next talk

Rutherford Appleton Laboratory

Final DAQ review - 20th February

DAQ Concepts

- Start with a general definition...
- "DAQ" as terminology is vague
 - Often use "readout", "DAQ" & "online" interchangeably
 - Confusion about what belongs where abounds
- For our purposes, consider DAQ as:

Rutherford Appleton Laboratory

 Everything in the data chain between front-end electronics (FEE) and persistent data storage

Concepts (II)

- DAQ operates continuously-live readout:
 - FEE provide alternating data buffers
 - DAQ incurs 0% 1st-order dead-time
- Quantum" of FEE data is the Time Block:
 - TB length approx 10-50ms (tuneable)
- Build overlapping Time Frame for trigger:
 - TF length approx 0.5 1s (tuneable)

Rutherford Appleton Laboratory

Overlap is one or more TB (trigger efficiency)

Concepts (III)

- Functional components of DAQ:
 - Readout of data from Front-end electronics Data transfer and assembly
 - Software triggering
 - Event formatting & distribution
- Same architecture at near & far detectors
 - Number of components differs
 - Software layer for FEE access changes

Rutherford Appleton Laboratory

DAQ Architecture (Far)

Rutherford Appleton Laboratory

Online Data Flow

Readout Processor

Rutherford Appleton Laboratory

Readout Processor

- ROP provides:
 - Control & monitoring of FEE
 - Readout of data from FEE in time blocks
 - Buffering & assembly of time frames (with overlaps)
 - Transfer of built time frames over PVIC to BRPs.
- 16 (8) ROPs @ far (near) detector
- 4 (2) ROPs per PVIC input branch

Rutherford Appleton Laboratory

Plaftorm: CES RIO3 PowerPC / VxWorks 5.4

Branch Readout Processor

Branch Readout Processor

- BRP provides:
 - Communication path to ROPs/TPs via PVIC
 - Synchronisation of data transfer from ROPs and buffering of time frames
 - Transfer of time frames to TPs
 - Monitoring of data flow
- One BRP acts as "master"
 - Interface to Run Control, sequences readout

Rutherford Appleton Laboratory

- Can be assigned dynamically
- Platform: Linux PC

Trigger Processor

Trigger Processor

- TP provides:
 - First location where all data in TF together
 - Final time sorting of hits in time frames
 - Selection of events by trigger algorithms

Rutherford Appleton Laboratory

- Flasher data processing
- Monitoring
- Output of selected data to DDS
- TPs (max 11) daisy chained to BRPs on PVIC output branch
- Platform: Linux PC

Data Distribution System

Data Distribution System

- DDS provides:
 - Reception of data from TPs via DAQ LAN (rate low)
 - Removal of duplicate triggers caused by overlaps
 - Formatting of raw data into ROOT files
 - Shipping of data for permanent storage

Rutherford Appleton Laboratory

- File access for dispatcher
- Platform: Linux PC

DAQ Run Model

- Described as finite state machine:
 - Primary states: idle, running etc.
 - Secondary states: indicate transitions between primary (e.g. preparing, stopping)
 - Each component maintains own state
 - Run control has global state and issues transition commands (max one pending cmd)
- Unit of data-taking with "fixed" conditions is the run
- Sub-run for book-keeping purposes

Run Model States - Idle

default state, no run in progress or out of run

Run Model States - Prepared

component (& dependents) configured & prepared for data taking

Rutherford Appleton Laboratory

Run Model States - Running

Rutherford Appleton Laboratory

data-taking in progress

Run Model States - Paused

data-taking suspended (debugging mode)

Rutherford Appleton Laboratory

Run Model States - Error

 one or more components failed to complete command etc.

Rutherford Appleton Laboratory

Summary

- More details to follow:
 - Tass Belias: ROP, data transfer etc.
 - Mark Thomson: Run Control
- Still work to do resolving interfaces with other systems
- Hope to have clarified system & terminology!!

Rutherford Appleton Laboratory